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INTRODUCTION 
 
 
To explain the evolution of extravagant male ornaments, Darwin (1871) 
proposed the theory of sexual selection, which he separated from the general 
theory of natural selection. He suggested that the disadvantages to male survival 
induced by such ornaments are compensated for by more or better females 
preferring that individual to other potential mates. Darwin did not explain, 
however, how such female preferences could be developed and persisted. This 
question remained largely unanswered until the advancement of Amotz 
Zahavis’ handicap principle in 1975. According to this, female preferences for 
elaborate male ornaments could evolve, if these ornaments would serve as 
indicators revealing male quality. The honesty of the indicator traits would be 
assured by the high cost (behavioural, developmental, maintenance etc.) of the 
signals, so the individuals of inferior quality would not be able to cheat. This 
idea was developed further by William Hamilton and Marlene Zuk (1982), who 
proposed that parasites could be of fundamental importance in the evolution of 
female preferences to extravagant male sexual characters. They hypothesised 
that the quality revealed by individual’s ornamentation is its ability to resist 
currently prevailing parasites. This idea led to the development of the concept 
of parasite-mediated sexual selection (PMSS), according to which, males who 
are more resistant to parasites and thereby in better condition are able to invest 
more resources into sexual display. Females would benefit from preferring more 
elaborately ornamented males as mates, as they would obtain direct benefits 
and/or parasite resistance genes for their offspring (reviewed in Andersson 
1994).  

Although the majority of living organisms are probably parasitic and their 
omnipresence is testimony to their success (Hudson & Dobson 1997), parasites 
were of little interest to ecologists and evolutionary biologists until the 1970s. 
Then, just in a couple of decades, a ground swell of interest has stimulated 
intensive research on the role of parasites in the life-histories of their hosts 
(reviewed e.g. in Clayton & Moore 1997, Zuk & Stoehr 2002). To date, it is 
widely accepted that although the immune system is essential for individual’s 
survival in a parasite-rich environment, it also imposes costs and is therefore 
likely to be involved in trade-offs with life-history traits (Sheldon & Verhulst 
1996; Lochmiller & Deerenberg 2000; Norris & Evans 2000; Zuk & Stoehr 
2002). Several studies have suggested that immune function may be directly 
integrated with the evolution of sexual selection, reproductive costs or 
population dynamics (e.g. Apanius et al. 1994; Gustafsson et al. 1994, 1995; 
Ebert 1995; Richner et al. 1995; Saino & Møller 1996; Sheldon & Verhulst 
1996; Verhulst et al. 1999; Lochmiller & Deerenberg 2000; Råberg et al. 2000; 
Zuk & Stoehr 2002; Hanssen et al. 2004). However, the physiological pathways 
behind these relationships are still poorly understood. For instance, despite the 
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extensive research focused on the PMSS, the question about the mechanisms, 
linking parasite resistance to expression of sexual ornamentation, have 
remained largely unanswered.  

Carotenoids have been suggested to play a major role in these relationships 
(Lozano 1994; Olson & Owens 1998), especially among birds where 
carotenoid-based ornaments are disproportionately common (reviewed in Gray 
1996; Møller et al. 2000). Carotenoids are essential for various aspects of 
immune function, as they participate in immuno-regualtion and -stimulation, 
lymphocyte proliferation and free-radical scavenging (e.g. Machlin & Bendich 
1987; Bendich 1989; Burton 1989; Chew 1993; Lozano 1994; Olson & Owens 
1998; Møller et al. 2000). Because animals cannot synthesize carotenoids de 
novo and have to acquire them from food (e.g. Fox 1979), a trade-off between 
investment of carotenoids in maintenance and ornamentation can be predicted. 
Individuals who are forced to fight infections during the formation of sexual 
ornaments are expected to have less carotenoids available for developing 
colourful traits (e.g. Lozano 1994; Olson & Owens 1998; Møller et al. 2000). 
However, despite the accumulating evidence on carotenoid-based sexual 
signalling, the exact pathways generating trade-offs between individual health 
status and signal expression are not completely clear (e.g. Olson & Owens 
1998; Hill 1999; Zuk & Stoehr 2002; Hartley & Kennedy 2004). The aim of the 
current thesis is to investigate how the immune function is connected to 
individual condition and expression of carotenoid-based sexual ornamentation, 
and to study the proximate mechanisms responsible for these relationships, 
using captive greenfinches (Carduelis chloris) as a model.  

In order to understand how parasite resistance is linked to the expression of 
sexual ornaments we have to understand the physiological mechanisms behind 
these relationships. The costs of immune defences have been proposed to form 
the basis of the resource allocation trade-offs linking the immune function to 
life-history traits and sexual advertisement (e.g. Sheldon & Verhulst 1996; 
Owens & Wilson 1999; Zuk & Stoehr 2002; Schmid-Hempel 2003). Although 
several recent studies have confirmed the involvement of immune function in 
life-history trade-offs (e.g. Deerenberg et al. 1997; Nordling 1998; Moreno et 
al. 1999; Cichoń 2000; Råberg et al. 2000; Ilmonen et al. 2000; Hanssen et al. 
2004), the physiological mechanisms that create these costs of immunity remain 
more poorly understood. For instance, some recent studies aiming to clarify the 
physiological effects of immune challenge have yielded conflicting results (e.g. 
Svensson et al. 1998; Ots et al. 2001; Fair & Ricklefs 2002). Therefore, more 
knowledge is needed about the physiological mechanisms responsible for the 
connections between immune system and other vital functions of the organism. 
The question about possible physiological costs accompanying immune 
response is addressed in the Paper II. 

Before we can observe and quantify the effects of immune challenge to 
individual’s physiology, we have to use reliable indices, describing these 
processes. A wide range of simple haematological condition indices have been 
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used to test the relationships between individuals’ health state and life-history 
traits during recent years (e.g. Dufva & Allander 1995; Saino et al. 1997; 
Møller et al. 1998; Ots et al. 1998; Figuerola et al. 1999; Hõrak et al. 1999;  
Nunn et al. 2000). However, different condition indices may describe different 
aspects of individual health, which may be variable in time. Thus, the condition 
indices used in the studies testing the hypotheses relating inter-individual 
variation in life-history or ornamental traits to individual phenotypic quality 
have to be consistent in time. For example, establishing effects of brood size 
manipulation upon individuals’ physiology requires condition indices to be 
stable in one or a few weeks, while the hypotheses regarding sexual selection 
assume that the expression of signal traits reliably reflects some more persistent 
component of individual’s health state. Still, most reports about the consistency 
of condition indices have concentrated on short time periods (Ots et al. 1998; 
Gosler & Harper 2000) or have focused on a limited number of traits (Chappell 
et al. 1995, 1996; Potti & Merino 1997; Bech et al. 1999; Dawson & Bortolotti 
1999; Potti et al. 1999; Koteja et al. 2000). Thus, to determine the time periods 
for which different condition indices are valid, more studies estimating the 
repeatability of different physiological variables under standard conditions are 
needed. How consistent are differential leukocyte counts, serum protein and 
triglyceride concentrations, basal metabolic rate, body mass, and spontaneous 
locomotion activity over short and long time periods in captive greenfinches, is 
described in Paper I. 

During the recent decades, the idea that carotenoid pigments may play a 
major role in the mechanisms linking parasite resistance to the expression of 
sexual ornaments has been in the focus of intensive research (reviewed e.g. in 
Møller et al. 2000). However, in order to test whether the trade-off between 
investing carotenoids into sexual signals and into immune function is involved 
in these mechanisms, we need to reliably measure the amount of carotenoids 
deposited into ornamentation. Moreover, if the trade-off between investing 
carotenoids into sexual signals and into immune function is involved in these 
mechanisms, the colouration of the ornaments has to reflect the amount of 
carotenoids deposited into them. Surprisingly, despite the considerable amount 
of work, concentrated on the relationships between carotenoid-based plumage 
colour and individual quality (reviewed in Møller et al. 2000), the question 
whether and how the measured plumage colouration does reflect the amount of 
carotenoids in plumes has remained virtually untested. This is investigated in 
Paper III by describing the relationships between spectrophotometrically 
measured plumage colour variables and feather carotenoid content. 

To date, several studies have demonstrated that carotenoid-based orna-
mentation reflects individual’s ability to mount an immune response to novel 
antigens. However, all these studies have concentrated on ornaments, based on 
metabolically active tissues (Zuk et al. 1995; Zuk & Johnsen 1998; Verhulst  
et al. 1999; Saino et al. 2000; Blount et al. 2003; Faivre et al. 2003). 
Surprisingly, despite the fact that feather ornaments are probably the most 
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widespread form of display amongs birds (e.g. Andersson 1994), the 
relationships between carotenoid deposition into feather ornaments and 
individual immunocompetence have not been investigated. Yet, the feather 
ornaments are of particular interest in the context of PMSS because once the 
carotenoids are deposited into such metabolically inactive tissues like feathers, 
they became unavailable for use in other vital purposes, like immune function 
(Lozano 1994; Olson & Owens 1998). Furthermore, as in many bird species 
moult occurs long (often several months) before the feathers are used in sexual 
display, carotenoid-based plumage colouration may be predicted to signal 
especially long-term aspects of individual’s quality. Whether the plumage 
colouration of male greenfinches reflects their general health state and ability to 
rise an immune response to novel antigens is investigated in Paper IV. 

Although the important role of carotenoids in PMSS has been supported by 
numerous evidence (reviewed e.g. in Møller et al. 2000), the exact mechanisms 
how the expression of ornaments reflects parasite resistance are still not clear 
(e.g. Olsson & Owens 1998; Hill 1999). A way to solve this problem is to 
simultaneously investigate the effects of parasites on individual physiology and 
the development of carotenoid-based sexual signals. Avian coccidiosis seems to 
be a potentially promising model for such experiments. Coccidia from the genus 
Isospora (Protozoa, Apicomplexa, Sporozoa, Coccidia) are widely distributed 
(reviewed e.g. in Giacomo et al. 1997; McGraw & Hill 2000; Duszynsky et al. 
2004) and can cause severe disease, even death among passerine birds (Box 
1977; Sironi 1994; Giacomo et al. 1997). Moreover, it is known from the 
studies on domestic chicken that coccidians from the genus Eimeria inhibit the 
absorption of several essential dietary components, including carotenoids in the 
intestine (e.g. Allen 1987; 1997; Allen & Fetterer 2002) and can cause 
depression of carotenoid-based pigmentation (Tyczkowsky et al. 1991). How 
the physiology and ornament expression of greenfinches is affected by  
the infection with intestinal coccidian parasite, Isospora lacazei, is studied in 
Paper V.  

The existence of concurrent polymorphism among the host resistance and 
parasite virulence is one of the main assumptions of the models of host-parasite 
coevolution (reviewed e.g. in Clayton & Moore 1997; Little 2002; Summers et 
al. 2003). However, this important assumption has not been tested in wild bird-
parasite model systems. The issue of variation in the host resistance and parasite 
virulence, and the possible relationships of these phenomena with the measures 
of general immunocompetence and plumage colouration in the wild-caught 
greenfinches and their Isosporan parasites is addressed in Paper VI.  
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STUDY SPECIES 
 
 

The greenfinch 
 
Greenfinch is medium-sized (ca 30 g) gregarious seed-eating passerine native to 
the western Palearctic region (Cramp & Perrins 1994). Males are larger and 
more colourful (Svensson 1992; Merilä et al. 1999), old males being olive-
green on their back side, with bright yellow breast (greenish-yellow in some 
geographic regions), less so on the belly and rump and yellow markings on 
primaries, primary coverts and the sides of the tail feathers (Cramp & Perrins 
1994). Females are smaller, more olive-brown and yellowish buff, having faint 
brown streaks on back and lacking full yellow tints in their plumage. Moult 
duration is 13–15 weeks from late July to early November (Cramp & Perrins 
1994). The mating system is mainly monogamous, but a significant degree of 
polygamy occurs, at least in some populations (ca. 24% of males in a 
population in southern England; Eley 1991). During the mating season, males 
perform conspicuous “song-flights”, “butterfly-flights” and other kinds of 
display to the females (Cramp & Perrins 1994). Several clutches are laid each 
year, and hence, the period of sexual activity is longer than in most other 
northern temperate-zone passerine birds. Further, the testis size is larger than 
expected from body weight, suggesting that sperm competition may be 
relatively intense in this species (Møller 1991; Merilä & Sheldon 1999). The 
male plumage brightness (measured by visual scoring) has been shown to be 
sexually selected trait as more brightly coloured male greenfinches are favoured 
by females as mates (Eley 1991). It has also been shown that males with more 
yellow ornamental feathers are less likely to be heavily infected with 
haemoparasites (Merilä et al. 1999) and have higher Sindbis virus clearance 
rates (Lindström & Lundström 2000). 
 
 

Coccidia 
 
Coccidia of the genus Isospora are obligate intracellular parasitic protozoa, 
infecting a wide range of songbird species in the wild (reviewed by Giacomo et 
al. 1997; McGraw & Hill 2000; Duszynski et al. 2004). A host becomes 
infected when it ingests oocysts that have been passed in the feces of another 
host. The oocyst excysts in the epithelial cells of intestinal mucosa and liberates 
sporozoites from its contents. The sporozoites penetrate the cells of the host’s 
small intestine and reproduce asexually. In case of passerine birds, the first-
generation sporozoites may also invade liver, spleen and lungs (atoxoplasmosis, 
e.g. Giacomo et al. 1997). In the epithelial cells of intestine, each generation of 
asexual reproduction produces multiple merozoites that infect new cells. This 
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stage of the infection can result in destruction of massive numbers of cells in the 
host’s small intestine and, ultimately, lead to the host’s death (e.g. Box 1977; 
Sironi 1994). Some of the merozoites that enter the host’s cells transform into 
gametocytes. The gametocytes transform into gametes, the gametes fuse, and 
the resulting zygote begins to develop into an oocyst. The developing oocyst 
escapes from the host’s cell, and it is passed in the host’s feces. The destruction 
of epithelial cells of small intestine during the reproduction of the parasite is 
probably the main pathological effect of the Isosporan infections, which can 
cause a drastic reduction in digestive and absorptive capacity of mucosa (e.g. 
Ruff & Fuller 1975; Hoste 2001). The pathogeneicity (which can ultimately 
lead to the host’s death) of Isosporan coccidiosis is well documented (Box 
1977; Sironi 1994; Giacomo et al. 1997; V) and therefore, it is likely that these 
parasites can appear to be an important evolutionary force for passerine birds. 
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RESULTS AND DISCUSSION 
 
 

Are the clinical condition indices reliable measures  
of individual performance? (I) 

 
To investigate whether widely used clinical health state indices are suitable for 
exploring the relationships between phenotypic quality and other individual 
characters, repeatabilities of 17 condition indices (Table 1) were measured in 
captive greenfinches over short (4–8 days) and long (over 4 months) periods. 
All monitored condition indices were significantly repeatable over the periods 
of four and eight days (Table 1). However, only leukocytic immune parameters, 
basal metabolic rate (BMR) and body mass expressed significant consistencies 
over four-month period (Table 1). This is not surprising, as different condition 
indices describe different aspects of individual condition, with different 
durations. It has been shown that PHA-response reflects short-term variation in 
individual nutritional state (reviewed in Alonzo-Alvarez & Tella 2001; Lifjeld 
et al. 2002). Also serum albumin and triglyceride concentrations are expected to 
reflect current catabolic processes (e.g. Jenni-Eiermann & Jenni 1998) and 
increase in serum globulin fraction is often characteristic to acute infections and 
inflammation (e.g. Coles 1997). Interestingly, evidence for the short-term 
individual consistency in nutritional condition was present in this data set, as 
revealed by significant repeatabilities of serum triglyceride and albumin levels 
(Table 1). Since all birds were fed ad libitum, this result probably reflects the 
significant inter-individual variation of the catabolic processes or nutrient 
absorption. At the same time, body mass, leukocytic immune parameters and 
BMR seem to be more influenced by factors that contribute to long-term 
differences between individual greenfinches. Leukocytes form the basis of the 
immune system of an organism, and their main function is protection against 
various pathogenic antigens. Hence, it is possible that high individual 
consistency of leukocytic variables in this study reflects between-individual 
differences in the prevalence of chronic infections. Also, elevated BMR might 
reflect activation of immune system (Demas et al. 1997; Ots et al. 2001). To 
summarise, while all the 17 considered condition indices are reliable measures 
of individual physiological performance if used for detecting the effects of 
short-term experimental manipulations, only leukocytic immune parameters, 
BMR and body mass appear suitable for describing long-term components of 
individual condition. 
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Table 1. Repeatabilities (r) of condition indices of captive male greenfinches between 
different time periods. 

Period 4 days 8 days 4 months 
Trait r (SE) n r (SE) n r (SE) n 
WBC 0.36 (0.16)* 31 0.45 (0.14)† 32 0.88 (0.06) ‡ 14 
Lymp. count  0.46 (0.14)† 31 0.51 (0.13)‡ 32 0.62 (0.17) † 14 
Het. count  0.50 (0.13)† 31 0.40 (0.15)† 32 0.76 (0.12) † 14 
H/L ratio  0.58 (0.12)† 31 0.30 (0.16)* 32 0.54 (0.20)† 14 
Total protein 0.56 (0.15)† 23 0.52 (0.16)† 23 –0.10 (0.29) 12 
Albumin 0.62 (0.13)‡ 23 0.56 (0.15)‡ 23 0.06 (0.30) 12 
β-globulin  0.36 (0.19)* 23 0.52 (0.16)† 23 –0.24 (0.28) 12 
γ-globulin  0.69 (0.11)‡ 23 0.66 (0.12)‡ 23 0.26 (0.28) 12 
Alb/Glo 0.74 (0.09)‡ 23 0.60 (0.14)‡ 23 0.26 (0.28) 12 
Triglycerides 0.47 (0.17)† 23 0.43 (0.17)* 23 –0.26 (0.29) 11 
Evening mass 0.80 (0.06)‡ 32 0.49 (0.14)‡ 32 0.70 (0.15)† 13 
Morning mass 0.83 (0.06)‡ 31 0.63 (0.11)‡ 31 0.62 (0.18)† 13 
BMR 0.86 (0.05)‡ 28 0.87 (0.05)‡ 28 0.63 (0.17)† 14 
BMR/mass 0.89 (0.04)‡ 28 0.84 (0.06)‡ 28 0.65 (0.16)† 13 
PHA-response     –0.08 (0.33) 10 
Jumping activity  0.45 (0.12)† 32 0.30 (0.17)* 31   
Total activity  0.54 (0.13)‡ 32 0.38 (0.15) † 32   

Note: Four-day repeatabilities (and corresponding SE-s) are averages of two estimates (day 1 vs 
day 4 and day 4 vs day 8). Sample sizes differ due to measurement failures of some variables. 
Lymp. count and Het. count stand for haemoconcentrations of lymphocytes and heterophils, 
respectively. For a four-month period, individual values of all leukocyte counts, total protein, 
albumin, triglycerides and basal metabolic reate (BMR) are standardized within autumn and 
spring measurement sessions to a mean of zero and variance of unity. *, p <0.05; †, p <0.01; ‡,  
p <0.001; otherwise ns. 
 

 
Is the immune response costly? (II) 

 
In order to determine the effect of an immune challenge to individual’s 

physiology, 17 condition indices of male captive greenfinches were recorded in 
the period of one, four and eight days subsequent to injection (p.i.) with 

physiological saline or non-pathogenic antigen (sheep red blood cells, SRBC). 
Measured variables included estimates for total and differential leukocyte 

counts, serum protein concentrations, serum triglyceride concentration, BMR, 
body mass, spontaneous locomotion activity, and total serum antioxidant 

capacity. Fourteen hours subsequent to SRBC injection, a transient increase in 
serum beta-globulin concentration was recorded (Fig. 1), indicating an acute 

phase response to the antigen. None of the other condition indices was affected 
by the treatment (all p> 0.05; see Tables 1 and 2 in Paper II), suggesting 
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Fig. 1. Serum beta-globulin concentrations of saline-injected (a) and SRBC-injected (b) 
greenfinches. Statistics are given in Table 2 in the Paper II. 
 
 
that mounting an immune response against SRBC did not incur any serious 
physiological impact for the birds maintained in affluent feeding regimen in 
captivity. These results contrast with previous studies, which have demonstrated 
that the activation of the immune system is costly (e.g. Lochmiller & 
Deerenberg 2000) as, for instance, remarkable increase in basal metabolism due 
to humoral immune challenge has been documented in laboratory mice (Demas 
et al. 1997) and in wild great tits (Ots et al. 2001). However, as exception from 
the general pattern of the result, in days 4 and 8 p.i., immune challenged 
greenfinches reduced significantly their spontaneous locomotion activity (Fig. 
2). Such reduction of activity is the typical part of “sickness syndrome”  

 

 
Fig. 2. Spontaneous locomotion activity of saline-injected (a) and SRBC-injected (b) 
greenfinches. Statistics are given in Table 1 in the Paper II. 
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accompanying host responses to infection and inflammation (e.g. Goodman et 
al. 1990; Aubert 1999; Lindström 2003). This result indicates that the activation 
of immune system may have caused greenfinches to reduce general energy 
expenditure. Hence, it is possible that immune response incurred at least some 
sort of expenses for the birds that could be finally converted to energetic 
currency.  
 
 

How does feather colour reflect  
its carotenoid content? (III) 

 
In this paper it was tested, whether the carotenoid-based colouration of 
ornamental feathers is a signal about the amount of carotenoids invested into 
them, as often expected (e.g. Lozano 1994; Olson & Owens 1998; Møller et al. 
2000). For this purpose, the spectrophotometrically measured colour estimates 
of hue, chroma and brightness (sensu Endler 1990), as well as carotenoid 
pigment contents were determined from the yellow parts of the tail feathers of 
male greenfinches. The feathers with higher values of chroma and hue had 
higher total concentrations of carotenoid pigments (Fig. 3). This study presents 
the first direct evidence that spectrophotometric measurements of plumage 
colouration can be used to estimate the amount of carotenoids deposited in bird 
feathers. At the same time, relationships between colour measurements and 
carotenoid content were slightly different for the lab-grown and wild-grown 
feathers (Fig. 3). This suggests that the degree to which different colour 
parameters reflect feather carotenoid content is not necessarily similar or even 
linear within the range of observable variation. Considerable amount of 
variation in plumage colour could be potentially ascribed to other factors in this 
study, as the proportion of variance in plumage colour explained by feather 
carotenoid content was not particularly high (32–51%). It has been suggested 
that the plumage colour is based not only upon the pigments but also on the 
feather structure (e.g. Auber 1957; Fox & Vevers 1960; Vevers 1982). Feather 
structure, in turn, has been shown to be very sensitive to developmental stress 
and abrasion. Thus, feather colouration may also indicate individual qualities 
complementary or different from those conveyed by the carotenoid pigments 
(reviewed in Fitzpatrick 1998). For instance, one might expect that abraded or 
worn feathers are less glossy and therefore reflect less light, completely 
independent of their carotenoid content (Fitzpatrick 1998).  
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Fig. 3. Relationships between total carotenoid content and colour measurements of the 
feathers (slope ± SE). 
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Does the plumage colouration reflect health? (IV) 
 
Carotenoid-based colouration of birds has been hypothesised to function as an 
honest signal of individual’s health due to trade-off between allocation of 
carotenoids into maintenance and signalling (reviewed e.g. in Lozano 1994; 
Olson & Owens 1998; Møller et al. 2000). An important prediction of this 
hypothesis, that more brightly ornamented individuals are able to mount 
stronger immune responses against novel antigens, has so far been tested only 
on metabolically active ornamental tissues like combs (Zuk et al. 1995; Zuk & 
Johnsen 1998; Verhulst et al. 1999), gapes (Saino et al. 2000), or peaks (Blount 
et al. 2003; Faivre et al. 2003). However, the feather ornaments are probably 
the most widespread form of display amongst birds (e.g. Andersson 1994). The 
question, whether male greenfinches display their immunological superiority by 
yellower plumage was tested by investigating the correlations between 
individual’s colouration and general health state and ability to mount an 
immune response to a novel antigen. Male greenfinches who had brighter 
yellow breast feathers mounted significantly stronger humoral immune response 
to SRBC (r = 0.45, p = 0.022, n = 22; Fig. 4) and had less circulating 
heterophils (r = –0.41, p = 0.016, n = 30; Fig. 5) than duller individuals. To my 
knowledge, this is the first direct evidence that carotenoid-based colouration of 
metabolically inactive ornamental tissues reflects humoral immunocompetence. 
Heterophils form the first line of cellular defence of an organism and their  
 

 
 
Fig. 4. Relationship between the brightness of yellow feathers and the SRBC antibody 
titre. If the marked outlier (standardized residual = 2.39) is excluded from the analysis 
then r = 0.61, p = 0.002, n = 21. 
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Fig. 5. Relationship between the brightness of yellow feathers and heterophile count 
(per ca. 10 000 erythrocytes). 
 
 
concentration in the blood stream is known to rise in response to microbial 
pathogens (reviewed in Harmon 1998). Heterophile counts have been also 
shown to describe relatively long-term components of individuals’ general 
health state (I). Hence, it is possible that the correlations between heterophile 
concentration and plumage colour arose because individuals suffering microbial 
infections during moult had to use more carotenoids for immunostimulation 
and/or repair functions and had therefore less carotenoids available for 
deposition into plumage. Thus, so far, these results suggest that the carotenoid-
based ornamental plumage of male greenfinches might indeed have evolved as 
an indicator of individual’s general health state and its ability to resist parasites 
as predicted by the PMSS (but see next chapter and Paper VI). 
 
 

Could the coccidian parasites provide the mechanism  
for PMSS in greenfinches? (V and VI) 

 
According to the concept of the PMSS, successful parasite invasion should 
decrease the expression of ornamental traits, as the use of limited resources for 
sexual advertisement is traded off against the need to fight off the parasites 
(Hamilton & Zuk 1982; Grafen 1990; Andersson 1994). Whether the coccidian 
intestinal parasites have such an effect on carotenoid-based ornamental plumage 
colouration of male greenfinches is investigated in Paper V. After suppressing 



 20

the Isosporan infection in the captive population in greenfinches, half of the 
birds were infected with a mixture of different Isospora strains, while the 
infection in the second half of the birds was continually suppressed by 
medication. Experimental inoculation of the experimental group resulted in over 
200-fold difference in oocyst output between medicated and infected birds. 
Infection intensity of the infected group rose 16 times over the pre-experimental 
level (Fig. 6A). This change in infection intensities was mirrored in a sudden 
decrease of body mass, serum albumin, triglyceride, vitamin E and carotenoid 
concentrations and in the increased concentration of heterophils in blood stream 
in infected birds, when compared to medicated individuals (Fig. 6B-H). 
Experimentally inoculated birds also deposited less carotenoids into their tail 
and breast feathers, which resulted in greater reduction in the colouration of 
these feathers, compared to the medicated birds (Fig. 6I-L).  

The main pathological effect of the Isosporan infection is probably the 
destruction of epithelial cells of small intestine during the reproduction of the 
parasite, causing a drastic reduction in digestive and absorptive capacity of 
mucosa (e.g. Ruff & Fuller 1975; Hoste 2001). In the case of cardueline finches, 
Isosporan parasites have been shown to damage most extensively the duodenal 
and jejunal part of the intestine (Giacomo et al. 1997). In domestic chicken, 
these intestinal compartments have been shown to be responsible for absorption 
of proteins (jejunum) and fats (duodenum) (Turk 1974), as well as vitamin E 
and carotenoids (Surai 2002). Moreover, the increase in peripheral heterophile 
numbers in infected birds may be indicating an active immune response against 
the introduced coccidia in the intestinal mucosa, where these phagocytozing 
cells participate in the removal of destroyed host tissues or dead parasites (e.g. 
Rose et al. 1979). Such phagocygotic processes are often linked to the tissue 
damage caused by the production of proteolytic enzymes and free radicals (e.g. 
Klasing & Leshchinsky 1999). Thus, the usage in antioxidant defence against 
free radicals produced during the immune response could be an additional 
reason for the drop of serum carotenoids and vitamin E during peak infection 
phase (e.g. Allen 1997). These results suggest that the bright ornamental 
colouration of male greenfinches may be signalling individual’s ability to resist 
the currently prevailing Isoporan parasites (Fig. 7). This would be consistent 
with the results that females of several bird species base their mate choice 
decisions on ornamental traits, affected by coccidian infection (e.g. ring-necked 
pheasants, Hillgarth 1990; wild turkeys, Buchholz 1995; American goldfinches, 
Johnson et al. 1993; house finches, reviewed by Hill et al. 2002). 
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Fig. 6. Effect of the manipulation of parasite load upon the condition indices and feather 
colouration of greenfinches. Filled circles – infected group; empty circles – medicated 
group. Asterisks denote significance of pairwise contrasts between infected and 
medicated group (* p < 0.05; ** p < 0.001). The course of experiment in days is noted 
in x-axes of the lowest graphs. Sample sizes and statistics are given in Tables 1 and 2 in 
the Paper V.  
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Fig. 7. An hypothetical mechanism connecting immune function to the expression of 
carotenoid-based ornamentation in greenfinches. Ingested carotenoids have to be 
absorbed in order to be used in the organism. Individual’s ability to acquire carotenoids 
from food depends on the efficiency of its digestive system. This quality can be 
drastically influenced by intestinal parasites (e.g. Isosporan coccidia) who diminish 
organism’s ability to absorb vital nutrients, including carotenoids. Organism’s ability to 
resist these parasites is in turn determined by its genetic characteristics and the 
availability of essential resources for the immune function. Thus, hosts who are more 
able to neutralise the pathological effects of intestinal parasites have more carotenoids 
available for ornament development as they have more efficient digestive systems and 
do not have to use so much carotenoids for their immune function. However, 
immunologically relevant genetic diversity within a pathogen population allows 
different strains of a pathogen to infect hosts that are immune to other antigenic 
variants. The dashed arrow indicating the relationship between host genetics and 
ornament expression is predicted in arbitrary models of the evolution of sexual 
signalling but is not required in the context of parasite mediated sexual selection. 
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Do Isosporan parasites appear an evolutionary force, responsible for the 
maintenance of individual variation in carotenoid-based sexual ornamentation? 
To my knowledge, this important assumption of the PMSS has not been tested 
in wild birds, which are common objects of the studies of parasite-mediated 
selection. The few previous experimental tests of the assumption of concurrent 
polymorphism among host resistance and parasite virulence in natural 
vertebrate models originate from studies of fish (e.g. López 1998; Wegner  
et al. 2003; Kurtz et al. 2004) and lizards (Oppliger et al. 1999). In Paper VI it 
was investigated, whether different Isosporan strains vary in virulence, whether 
different host individuals vary in resistance to infection, and whether the 
variation in host resistance is genetically determined. In order to test these 
hypotheses, wild-caught captive male greenfinches were infected with 
Isosporan parasites, originating either from single or multiple hosts.  

The experiment revealed that different Isosporan strains varied in their 
ability to invade hosts. Infection with multiple novel strains resulted in higher 
virulence than infection with a single novel strain (Fig. 8C). Thus, birds were 
more likely to encounter novel virulent strains of coccidia from heterologous 
than from homologous inoculations. Greenfinches also varied in their ability to 
resist novel infection, as infection intensities of “initially resistant” birds 
remained low throughout the experiment, compared to other birds, infected with 
the same inoculum (Fig. 8D). This implies that natural infection intensities 
confer information about the ability of individuals to resist also novel strains. 

In order to be a target of microevolutionary processes, individual variation 
in resistance to coccidiosis has to be genetically determined. Average infection 
intensity did not decrease after the second infection among birds who were 
infected with the same heterologous parasite strains (Fig. 8A). Moreover, 
although inoculated with the same heterologous strain, “initially resistant” birds 
had lower infection intensities than “initially susceptible” birds throughout the 
experiment (Fig. 8D). Thus, primary infection with mixture of Isosporan strains 
did not result in the development of acquired immunity against the subsequent 
infections with the same parasite strains. This result strongly argues for the 
genetic origin of the between-individual differences in infection intensities. An 
alternative scenario would suggest that some individuals express low infection 
intensities just because they have not encountered truly pathogenic parasite 
strains yet. This scenario assumes, that after any encounter with a new parasite 
strain, the birds are able to acquire immunological memory, which helps to 
suppress infection efficiently at subsequent encounters with the same parasite 
strain. This was not the case, which suggests that the variation in resistance to 
different Isospora strains can be caused by genetic differences between 
individual greenfinches. Thus the results of the current experiment indicate that 
the outcome of coccidian infection in greenfinches depends on concurrent 
variation in host resistance, parasite virulence and their interaction, and indirect 
evidence suggests that this variation has a genetic basis. This hints that 
coccidian parasites in greenfinches can contribute to the maintenance of 
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variation in host’s resistance genes and therefore may be involved in the 
mechanisms, linking immune function to the carotenoid-based signalling  
(Fig. 7). 

 

 
Fig. 8. Effect of experimental infections upon the coccidian oocyst shedding (per gram 
of feces) in different treatment groups. Open circles – double infection with own strain; 
filled circles – double infection with a mixture of strains in “susceptible” hosts; open 
squares – infection with a mixture of strains in “resistant” hosts (second time treated 
with water); filled squares – infection with a single external strain (second time infected 
with own strain). Coccidian reproduction was completely arrested both before the first 
and second infection (not shown in the figure). n = 12–13 birds per group. F- and p-
values are from the repeated measures ANOVA. Vertical bars are SE. 
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It was shown in Paper IV that plumage colouration of male greenfinches 
can signal individual’s health and ability to rise a humoral immune response to 
SRBCs. It has been proposed that such tests of individual’s general immuno-
competence are a more relevant measure of individual’s ability to deal with the 
invading pathogens than the actual parasite counts (Apanius 1998; Møller et al. 
1999; 2000). However, the usefulness of such immune tests for evaluation of 
host ability to resist the currently prevailing parasites is seldom verified in 
controlled infection experiments (e.g. Owens & Wilson 1999; Ryder 2003). 
This was also investigated in Paper VI. Among the birds who responded to the 
experimental infection with declined infection intensities, pre-experimental 
infection intensities correlated negatively with SRBC antibody titres, while no 
such pattern emerged among the birds whose infection intensity increased after 
first infection (see Fig. 6 in Paper VI). At the same time, SRBC titres also 
clearly reflected the nutritional state of individuals (see Fig. 7 in Paper VI). 
Therefore, it seems that birds who were less inflicted by or more resistant to 
coccidian infection had less damaged intestine, and were therefore capable to 
rise a stronger humoral immune response against a novel antigen. This suggests 
that high SRBC antibody titres indeed reflect individual’s ability to resist an 
important parasite species. The causality of this relationship, however, cannot 
be currently inferred from this experiment. One possibility is that better general 
immunocompetence (indicated by high SRBC titres) enabled some birds to 
suppress the challenge infections more efficiently, which also resulted in higher 
body mass and plasma triglyceride levels due to less damaged intestinal 
mucosa. Alternatively, genetic resistance would enable some individuals to 
manage their challenge infections so efficiently that this results in better 
nutritional condition. Better condition, in turn, would enable to mount stronger 
antibody response against SRBC. 

Birds who were more susceptible to the first experimental infection 
mounted stronger swelling response to PHA injection (r = 0.49, p = 0.008, n 
=38). This result suggests exactly the opposite, when compared to the 
relationship between infection intensities and SRBC antibody titres. If the 
magnitude of the swelling response to PHA indeed reflects the animal’s general 
potential for cell-mediated immunity (e.g. Smits et al. 1999; Martin et al. 2001), 
then it would appear that most immunocompetent individuals are least resistant 
to a real infections in this study! However, such an interpretation would be 
overly simplistic, given the integrated and extremely complex structure of the 
vertebrate immune system. It is important to note here that the immune response 
against coccidiosis is mainly based on the same processes, which are also 
responsible for the swelling response to PHA injection (e.g. Lillehoj 1998). It is 
therefore likely that birds who were not resistant to the experimental infection 
were actively fighting against it and had therefore up-regulated their T-cell 
mediated immune function. Similar enhancing effect of the parasites on T-cell 
mediated immune function has been also previously shown in house martins 
(Christe et al. 2000) and in European starlings (Gwinner et al. 2000). These 
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results imply that strong PHA-responses do not always need to indicate 
individual’s ability to resist the currently prevailing parasites, but can also be 
reflecting the effects of current infections. This calls for caution in interpreting 
the results of the standard immune tests in the context of parasite resistance (see 
also Tella et al. 2001 and Ryder 2003). 

The results, presented so far (III; IV; this Paper) suggested that the 
carotenoid-based ornamental plumage of male greenfinches might have evolved 
as an indicator of individual’s general health state and ability to resist coccidian 
parasites as predicted by the PMSS (Fig. 7). Therefore, it was expected that 
individuals’ ability to resist coccidian infections would be mirrored in their 
plumage colouration. However, no significant correlations between colour 
variables and infection parameters were detected (all p-values 0.1…1). 
Moreover, on the contrary to the previous results (Fig. 4), the greenfinches who 
showed weak SRBC antibody titres grew tail feathers with higher values of 
chroma (rs = –0.33, p = 0.030, n = 45) and brightness of yellow (rs = –0.32,  
p = 0.034, n = 45) than the birds who were able to produce higher SRBC 
antibody titres during the experiment. Previous results showed that the value of 
chroma of the yellow parts of the tail feathers correlate positively with the 
feather carotenoid content (III) and that Isosporan infection reduces the amount 
of the carotenoids deposited into the feathers (V). These findings suggested that 
a rather straightforward mechanism could be responsible for the connections 
between individual’s immune function and the carotenoid-based ornament 
expression in greenfinches (Fig. 7). Given the immunostimulatory role of 
carotenoids, it was expected that the birds whose digestive system is less 
damaged by the coccidian infection are able to deposit more carotenoids into 
the feathers growing during the experiment, and also mount stronger immune 
response against foreign antigens due to their better condition. The fact that 
actually the opposite pattern was observed indicates that the relationships 
between individual sexual ornamentation and immune function appear much 
more complicated. One of the reasons for the discordance between the previous 
results (IV) and this experiment may be that the individual responses to the 
artificial antigens appear very sensitive to the current experimental conditions.  

The lack of positive correlations between the ornament quality, parasite 
resistance and immunocompetence appears surprising in the context of previous 
work on parasitism, immunity and plumage colouration in greenfinches. 
Previously observed correlations between the plumage colouration and blood 
parasites loads (Merilä et al. 1999), Sindbis virus clearance rates (Lindstöm & 
Lundstrom 2000) and the indices of general health state and immuno-
competence (IV), together with the drastic effect of coccidian infection on the 
condition and appearance of male greenfinches (V) have suggested that 
parasites can play a role in the evolution of ornamental plumage in green-
finches. However, the results of this experiment imply that the physiological 
mechanisms by which the competence of the immune system is expressed in 
sexual ornaments, are more complicated than predicted in the figure 7. As a 
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possible explanation to this controversy, I could imagine that individual’s 
ability to suppress efficiently the challenge infections may not necessarily be 
the trait maximised by selection. For instance, it has been suggested that the 
lack of an immune response may sometimes also be an adaptation of the host 
rather than a failure to fight off the parasites (e.g. Boots & Bowers 2004). When 
the costs, inflicted by the immune system activation, outweigh the costs 
inflicted by parasite invasion, the tolerance of the infection should result in 
greater fitness benefit for the host than the suppression of the infection (Råberg 
et al. 1998; Roy & Kirchner 2000). Therefore, the possibility that under certain 
circumstances, condition-dependent ornaments may be used also as an indicator 
of individual’s ability to tolerate infection, cannot be totally excluded. 

In conclusion, this study has demonstrated the great potential of the avian 
coccidiosis models for microevolutionary research, but has also revealed novel 
and somewhat unexpected aspects of the relationships between infection 
resistance, immunocompetence and the expression of signal traits. These 
questions, especially the ones related to the potential costs and benefits of infec-
tion resistance and tolerance certainly call for further experiments in this area.  
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SUMMARY 
 
The aim of the current thesis was to investigate how immune function is 
connected to the individual condition and the expression of carotenoid-based 
sexual ornamentation, and to describe the proximate mechanisms responsible 
for these relationships, using captive greenfinches (Carduelis chloris) as a 
model.  

First: To quantify the effects of immune challenge to individual physio-
logy, reliable indices describing these processes have to be used. How 
consistent are differential leukocyte counts, serum protein and triglyceride 
concentrations, basal metabolic rate, body mass, spontaneous locomotion 
activity, and total serum antioxidant capacity over short and long time periods 
in captive greenfinches, were investigated in Paper I. All the studied traits 
appeared suitable for the detection of short-term experimental effects upon 
individual’s physiology. Leukocytic parameters, basal metabolic rate and body 
mass were significantly consistent over four months’ period and may therefore 
appear suitable for exploring the relationships between individual phenotypic 
quality, life-history and signal traits. 

Second: To determine the effect of an immune challenge to individual’s 
physiology, the above-mentioned condition indices of male captive green-
finches were monitored subsequent to injection with physiological saline or 
sheep red blood cells (SRBC; II). Despite to the fact that acute-phase response 
to the antigen was detected, most of the condition indices were not affected by 
the immune challenge. However, immune challenged individuals reduced their 
spontaneous locomotion activity, suggesting a switch to energy conservation. 
Unfortunately, these results did not enable an insight into the nature of the costs 
accompanying immune challenge. 

Third: Carotenoid-based colouration of birds has been hypothesised to 
function as an honest signal of individual’s health due to trade-off between the 
allocation of carotenoids into maintenance and signalling. This hypothesis relies 
on the assumption, that the colouration of the ornaments reflects the amount of 
carotenoids deposited into them. This was tested, by describing the relationships 
between spectrophotometrically measured plumage colour estimates of hue, 
chroma and brightness and feather carotenoid content (III). It appeared that the 
estimates of chroma and hue are reliable indices of feather carotenoid content. 

Fourth: Although the importance of carotenoids in sexual signalling has 
been in the scope of extensive research, the relationships between individual 
immunocompetence and carotenoid-based plumage colouration have not been 
investigated. However, the feather ornaments are the most widespread form of 
display among birds and can be predicted to signal especially long-term aspects 
of individual’s quality. Whether the plumage colouration of male greenfinches 
reflects their general health state and immunocompetence was investigated in 
Paper IV. Individuals with brighter yellow breast feathers were in better general 
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health state and were able to mount stronger humoral immune response against 
a novel antigen (SRBC). 

Fifth: Whether the coccidian infections could provide the mechanism 
linking parasite resistance to carotenoid-based sexual ornamentation in 
greenfinches was investigated in Papers V and VI. The experimental infection 
with Isospora lacazei resulted in drastic effects upon the physiology and 
expression of carotenoid-based plumage colouration in greenfinches, probably 
due to the reduced absorption of nutrients (including carotenoids and vitamin E) 
in infected birds (V). This suggests a rather straightforward mechanism for the 
connections between the immune function and carotenoid-based ornament 
expression in greenfinches – the birds whose digestive system is less damaged 
by the coccidian infection are able to deposit more carotenoids into the feathers.  

The existence of concurrent polymorphism among host resistance and 
parasite virulence is one of the main assumptions of the models of parasite 
mediated sexual selection. It was thus predicted that greenfinches should vary in 
genetic resistance to coccidian infection while different parasite strains should 
vary in virulence. This was tested in Paper VI. Additionally, the correlations 
between parasite resistance, immunocompetence and carotenoid-based plumage 
colouration were examined. The outcome of experimental infection with 
different Isosporan strains depended on concurrent variation in parasite 
virulence and host resistance, which was most likely genetically determined. 
This suggests the great potential of avian coccidiosis models for micro-
evolutionary research. However, the lack of positive correlations between 
plumage colour, parasite resistance and immunocompetence implies that the 
physiological mechanisms, connecting immune function and ornament expres-
sion in greenfinches are more complicated than could be predicted by the results 
presented in Papers V and IV. 
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KOKKUVÕTE 
 
 

Parasiidid, immuunfunktsioon ja  
karotinoididel põhinevad ornamendid rohevintidel 

 
Charles Darwini poolt esitatud sugulise valiku teooria on olnud teadusliku 
debati teemaks juba enam kui sajand. Darwin väitis, et silmatorkavad sekun-
daarsed sootunnused võivad olla sugulise valiku poolt soositud, kui emased 
loomad eelistaksid partneri valikul ornamenteeritumaid isaseid. Põhjused, miks 
emased sääraseid tunnuseid eelistavad, on aga siiani ebaselged. Viimastel 
aastakümnetel on suurt tähelepanu pööratud parasiitide rollile peremehe elu-
käigu evolutsioonis ja sugulise valiku mehhanismides. Ehkki parasiitide vastu 
võitlemine on ilmselgelt adaptiivne, nõuab selleks vajaliku immuunsüsteemi 
ülesehitamine ja rakendamine ressursse. Seega peab immuunfunktsioon 
konkureerima ühiste ressursside pärast ning seeläbi interakteeruma kõigi teiste 
organismi funktsioonidega, sealhulgas sugulise valiku signaaltunnuste välja-
arendamisega. Parasiitide poolt vahendatud sugulise valiku hüpoteesi kohaselt 
suudaksid antud hetkel levivate parasiitide suhtes vastupanuvõimelisemad 
isendid investeerida enam sugulisse signaliseerimisse, kuna nad ei pea kulutama 
piiratud ressursse parasiitide vastu võitlemiseks. Emastel tasuks seega eelistada 
enam ornamenteeritud isaseid, kes oleksid võimelised rohkem investeerima 
sigimisse ja/või oleksid väiksema tõenäosusega mõne nakkuse edasikandjad. 
Lisaks, kui eeldada, et immuunvõime on päritav, tagaksid emased ornamen-
teeritumate isastega paaritudes kõrge immuunvõime ka oma järglastele. Küsi-
mus, missugused füsioloogilised mehhanismid seovad sekundaarsete soo-
tunnuste avaldumist parasiidiresistentsusega, on aga seni jäänud konkreetse 
vastuseta. Käesoleva dissertatsiooni eesmärgiks oli selgitada, millised on seosed 
immuunfunktsiooni ning indiviidi üldise konditsiooni ja karotinoidsetel pig-
mentidel põhinevate sekundaarsete sootunnuste ekspressiooni vahel. Uurimis-
objektina kasutati vangistuses peetavaid rohevinte (Carduelis chloris), kelle 
karotinoidsetel pigmentidel põhinev sulestik on teadaolevalt sugulise valiku 
indikaatortunnus – eredamalt värvunud isased on emaste poolt eelistatumad 
sigimispartnerid. 

Esiteks: Et adekvaatselt hinnata immuunreaktsioonide mõju indiviidi füsio-
loogilistele parameetritele, peavad kasutatavad konditsiooniindeksid neid prot-
sesse piisava täpsusega kirjeldama. Artiklis I vaadeldi, kui püsivad on erinevad 
leukotsüütsed immuunparameetrid, vereseerumi valkude ning triglütseriidide 
sisaldus, põhiainevahetustase, kehamass, spontaanne liikumisaktiivsus ning 
vereseerumi üldine antioksüdatiivne potentsiaal erinevate ajavahemike vältel. 
Selgus, et kõik vaadeldud konditsiooniindeksid on sobivad kirjeldamaks lühi-
ajalisi füsioloogilisi muutusi isendi seisundis. Samas, leukotsüütsed immuun-
parameetrid, põhiainevahetustase ning kehamass püsisid suhteliselt stabiilsetena 
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nelja kuu vältel. Järelikult võivad need konditsiooniindeksid peegeldada ka 
pikaajalisi isenditevahelisi kvaliteedierinevusi ning olla seega sobivad kondit-
siooni, elukäiguomaduste ning sugulise valiku indikaatortunnuste vaheliste 
seoste uurimiseks. 

Teiseks: Immuunfunktsiooni osalemine erinevate elukäiguomaduste vahe-
listes lõivsuhetes eeldab, et immuunsüsteemi ülesehitus ja rakendamine on 
kulukas. Selgitamaks, kas humoraalne immuunväljakutse on kulukas, süstiti 
vangistuses peetavaid isaseid rohevinte mittepatogeense antigeeni (lamba 
erütrotsüüdid) või füsioloogilise lahusega (II). Kuigi võõrantigeeniga süstitud 
lindudel kutsuti esile lühiajaline akuutse faasi vastus, ei kutsunud humoraalne 
immunuväljakutse esile konditsiooniindeksite väärtuste olulisi muutusi. Siiski 
vähenes võõrantigeeniga süstitud lindude spontaanne liikumisaktiivsus. See 
osutab kaudselt immuunreaktsioonide kulukusele, kuna võõrantigeeniga süsti-
tud linnud olid sunnitud energeetilisi kulutusi piirama.  

Kolmandaks: Lindude karotinoididel põhinevat sulestiku värvust peetakse 
usaldusväärseks signaaliks isendi tervisliku seisundi kohta, kuna eeldatakse, et 
esineb lõivsuhe karotinoidide suunamisel elutähtsatesse füsioloogilistesse 
protsessidesse või signaliseerimisse. See hüpotees põhineb eeldusel, et sulgede 
värv peegeldab neisse paigutatud karotinoidide hulka. Selle eelduse paika-
pidavuse kontrollimiseks kirjeldati seoseid isaste rohevintide sabasulgede 
karotinoidide sisalduse ja neilt spektrofotomeetriliselt mõõdetud värvipara-
meetrite (värvi toon – hue, puhtus – chroma ja ülderedus – brightness) vahel 
(III). Selgus, et suled, millelt mõõdeti kõrgemad värvi tooni ja puhtuse 
väärtused, sisaldasid ka enam karotinoide. 

Neljandaks: Ehkki karotinoidsete pigmentide roll sugulise valiku 
indikaatormehhanismides on pälvinud suurt tähelepanu, ei ole siiani uuritud, kas 
karotinoididel põhinev sulgede värvus peegeldab linnu immuunvõimet. Nime-
tatud hüpoteesi testiti artiklis IV. Eredamate rinnasulgedega linnud tekitasid 
tugevamat humoraalset immuunvastust võõrantigeenile ning nende verest 
mõõdeti oluliselt madalamad heterofiilide kontsentratsioonid kui tuhmimalt 
värvunud isenditel. Need tulemused viitavad eredamalt värvunud lindude 
tugevamale immuunvõimele. 

Viiendaks: Artiklites V ja VI selgitati, kas ainuraksed sooleparasiidid, 
koktsiidid, võivad olla seotud parasiitide poolt vahendatud sugulise valiku 
mehhanismidega. Eksperimentaalselt esile kutsutud koktsiidinakkuse mõju 
vangistuses peetavate isaste rohevintide tervislikule seisundile ning ornamen-
taalsete sulepartiide värvusele vaadeldi artiklis V. Koktsiididega nakatamine 
põhjustas lindude toitumusliku ning tervisliku seisundi ja ornamentaalsete 
sulgede karotinoidide sisalduse ning värviparameetrite drastilise languse. 
Saadud andmetele tuginedes võib väita, et koktsiidid võivad mängida olulist 
rolli parasiitide vahendatud sugulise valiku mehhanismides. Linnud, kelle 
soolestik on koktsiidinakkuse tagajärjel enam kahjustatud, ei ole võimelised 
piisavalt karotinoide omastama ja on seetõttu sunnitud vähendama sulgedesse 
paigutatava pigmendi hulka. 
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Peremehe ja parasiidi koevolutsiooni mudelid eeldavad, et ühe populat-
siooni indiviidid erinevad üksteisest nakkusresistentsuse poolest, ning sama-
aegselt varieerub ka erinevate parasiiditüvede virulentsus. Selle eelduse kehti-
vust rohevindi koktsiidinakkuse mudelis kontrolliti artiklis VI. Lisaks testiti, 
kas rohevintide vastupanuvõime eksperimentaalsele koktsiidinakkusele korre-
leerub nende immuunvõime (mõõdetud kui immuunvastus mittepatogeensetele 
antigeenidele) ja karotinoididel põhineva sulestiku värvusega. Selgus, et 
erinevad koktsiiditüved põhjustasid erinevates peremeestes erineva virulent-
susega nakkust. Kaudsed tõendid viitasid, et vaadeldud isenditevahelised erine-
vused nakkusresistentsuse osas võivad olla geneetiliselt determineeritud. Need 
tulemused näitavad selle mudelsüsteemi sobivust parasiitide vahelise sugulise 
valiku ning peremehe nakkusresistentsuse ja parasiidi virulentsuse koevo-
lutsiooni uurimiseks. Siiski ei ilmnenud käesolevas katses ennustatud posi-
tiivseid seoseid sulgede värvuse, immuunvõime ja koktsiidiresistentsuse vahel. 
Need tulemused osutavad, et füsioloogilised mehhanismid, mis seovad 
sekundaarsete sootunnuste avaldumisel parasiidiresistentsusega, on palju 
keerukamad, kui võis oletada artiklites IV ja V kirjeldatud tulemuste põhjal. 
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